×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
普通高等教育十二五规划教材计算方法

普通高等教育十二五规划教材计算方法

1星价 ¥19.5 (6.1折)
2星价¥19.5 定价¥32.0
暂无评论
图文详情
  • ISBN:9787030318657
  • 装帧:暂无
  • 册数:暂无
  • 重量:暂无
  • 开本:16开
  • 页数:186
  • 出版时间:2019-03-01
  • 条形码:9787030318657 ; 978-7-03-031865-7

本书特色

本书根据普通高等理工科院校“计算方法”和“数值分析”课程的教学大纲编写而成,重点介绍计算机上常用的典型计算方法和基本理论。主要内容包括数值计算中的误差分析、线性方程组与非线性方程组的解法、矩阵特征值与特征向量的计算、非线性方程求根的方法、数值逼近的插值法与数据拟合法、数值积分与数值微分、常微分方程初值问题的数值解法等。书中内容力求精炼充实、由浅入深,从典型算法与实际问题着手,循序渐进,简洁易懂,便于教学与自学。每章都有较明确简洁的算法与实例,着重训练读者的计算能力,培养读者解决实际问题的方法和创新能力。每章后还配有适量的习题,便于读者掌握和巩固重点内容、算法与基本思想。

内容简介

《计算方法》根据普通高等理工科院校“计算方法”和“数值分析”课程的教学大纲编写而成,重点介绍计算机上常用的典型计算方法和基本理论。主要内容包括数值计算中的误差分析、线性方程组与非线性方程组的解法、矩阵特征值与特征向量的计算、非线性方程求根的方法、数值逼近的插值法与数据拟合法、数值积分与数值微分、常微分方程初值问题的数值解法等。书中内容力求精炼充实、由浅入深,从典型算法与实际问题着手,循序渐进,简洁易懂,便于教学与自学。每章都有较明确简洁的算法与实例,着重训练读者的计算能力,培养读者解决实际问题的方法和创新能力。每章后还配有适量的习题,便于读者掌握和巩固重点内容、算法与基本思想。
《计算方法》可作为普通高等院校数学各专业的本科生、研究生和理工科各类相关专业的本科生、研究生的“计算方法”、“数值分析”课程的教材或参考书。

目录

前言 第1章 引论 1.1 数值问题的计算方法 1.2 浮点数 1.3 误差、有效数字 1.4 误差的估计 1.5 在近似计算中需要注意的若干问题 习题 第2章 插值法与数值微分 2.1 拉格朗日(Lagrange)插值 2.2 牛顿(Newton)插值 2.3 埃尔米特(Hermite)插值 2.4 分段插值 2.5 三次样条插值 2.6 插值余项公式 2.7 数值微分 习题 第3章 数据拟合法 3.1 *小二乘原理 3.2 多元线性数据拟合 3.3 非线性数据拟合 3.4 正交多项式拟合 习题 第4章 数值积分 4.1 数值积分初步 4.2 复化数值积分公式 4.3 数值积分公式的误差估计 4.4 逐步梯形方法与龙贝格公式 4.5 高斯(Gauss)型求积公式 习题 第5章 非线性方程及非线性方程组的解法 5.1 对分法 5.2 迭代法 5.3 牛顿迭代法 5.4 弦位法 5.5 解非线性方程组的牛顿迭代法 习题 第6章 解线性方程组的直接法 6.1 高斯消去法 6.2 选主元素法 6.3 矩阵的LU分解 6.4 矩阵的PLU分解 6.5 矩阵的LLT分解 习题 第7章 解线性方程组的迭代法 7.1 范数 7.2 几种常用的迭代格式 7.3 迭代法的收敛性 7.4 误差分析 习题 第8章 矩阵特征值与特征向量的计算 8.1 引言 8.2 幂法 8.3 幂法的加速与降阶 8.4 反幂法 8.5 计算实对称矩阵特征值和特征向量的对分法 8.6 雅可比(Jacobi)方法 习题 第9章 常微分方程初值问题的数值解法 9.1 引言 9.2 几种简单的数值解法 9.3 龙格-库塔方法 9.4 线性多步法 习题 部分习题参考答案 参考文献
展开全部

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航