×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
华章数学原版精品系列泛函分析(英文版.原书第2版.典藏版)

华章数学原版精品系列泛函分析(英文版.原书第2版.典藏版)

1星价 ¥69.3 (7.0折)
2星价¥69.3 定价¥99.0
暂无评论
图文详情
  • ISBN:9787111654742
  • 装帧:平装-胶订
  • 册数:暂无
  • 重量:暂无
  • 开本:16开
  • 页数:436
  • 出版时间:2020-05-01
  • 条形码:9787111654742 ; 978-7-111-65474-2

内容简介

CONTENTSPrefaceAbout thd AuthorPart I General TheoryTopological Vector SpacesIntroductionSeparation propertiesLinear mappingsFinite-dimensional spacesMetrizationBoundedness and continuitySeminorms and local convexityQuotient spacesExamplesExercises2 CompletenessBaire categoryThe Banach-Steinhaus theoremThe open mapping theoremThe closed graph theoremBilinear mappingsExercises3 ConvexityThe Hahn-Banach theoremsWeak topologiesCompact convex setsVector-valued integrationHolomorphic functionsExercises4 Duality in Banach SpacesThe normed dual of a normed spaceAdjointsCompact operatorsExercises5 Some ApplicationsA continuity theoremClosed subspaces of fi-spacesThe range of a vector-valued measureA generalized Stone-Weierstrass theoremTwo interpolation theoremsKakutani''''s fixed point theoremHaar measure on compact groupsUncomplemented subspacesSums of Poisson kernelsTwo more fixed point theoremsExercisesPart II Distributions and Fourier Transform6 Test Functions and DistributionsIntroductionTest function spacesCalculus with distributionsLocalizationSupports of distributionsDistributions as derivativesConvolutionsExercises7 Fourier TransformsBasic propertiesTempered d]str]but]onsPaley-Wiener theoremsSobolev''''s lemmaExercises8 Applications to Differential EquationsFundamental solutionsElliptic equationsExercises9 Tauberian TheoryWiener''''s theoremThe prime number theoremThe renewal equationExercisesPart III Banach Algebras and Spectral Theory10 Banach AlgebrasIntroductionComplex homomorphismsBasic properties of spectraSymbolic calculusThe group of invertible elementsLomonosov''''s invariant subspace theoremExercises11 Commutative Banach AlgebrasIdeals and homomorphismsGelfand transformsInvolutionsApplications to noncommutative algebrasPositive functionalsExercises12 Bounded Operators on a Hilbert SpaceBasic factsBounded operatorsA commutativity theoremResolutions of the identityThe spectral theoremEigenvalues of normal operatorsPositive operators and square rootsThe group of invertible operatorsA characterization of B*-algebrasAn ergodic theoremExercises13 Unbounded OperatorsIntroductionGraphs and symmetric operatorsThe Cayley transformResolutions of the identityThe spectral theoremSemigroups of operatorsExercisesAppendix A Compactness and ContinuityAppendix B Notes and CommentsBibliographyList of Spe SymbolsIndex

目录

Preface About thd Author Part I General Theory Topological Vector Spaces Introduction Separation properties Linear mappings Finite-dimensional spaces Metrization Boundedness and continuity Seminorms and local convexity Quotient spaces Examples Exercises 2 Completeness Baire category The Banach-Steinhaus theorem The open mapping theorem The closed graph theorem Bilinear mappings Exercises 3 Convexity The Hahn-Banach theorems Weak topologies Compact convex sets Vector-valued integration Holomorphic functions Exercises 4 Duality in Banach Spaces The normed dual of a normed space Adjoints Compact operators Exercises 5 Some Applications A continuity theorem Closed subspaces of fi-spaces The range of a vector-valued measure A generalized Stone-Weierstrass theorem Two interpolation theorems Kakutani's fixed point theorem Haar measure on compact groups Uncomplemented subspaces Sums of Poisson kernels Two more fixed point theorems Exercises Part II Distributions and Fourier Transform 6 Test Functions and Distributions Introduction Test function spaces Calculus with distributions Localization Supports of distributions Distributions as derivatives Convolutions Exercises 7 Fourier Transforms Basic properties Tempered d]str]but]ons Paley-Wiener theorems Sobolev's lemma Exercises 8 Applications to Differential Equations Fundamental solutions Elliptic equations Exercises 9 Tauberian Theory Wiener's theorem The prime number theorem The renewal equation Exercises Part III Banach Algebras and Spectral Theory 10 Banach Algebras Introduction Complex homomorphisms Basic properties of spectra Symbolic calculus The group of invertible elements Lomonosov's invariant subspace theorem Exercises 11 Commutative Banach Algebras Ideals and homomorphisms Gelfand transforms Involutions Applications to noncommutative algebras Positive functionals Exercises 12 Bounded Operators on a Hilbert Space Basic facts Bounded operators A commutativity theorem Resolutions of the identity The spectral theorem Eigenvalues of normal operators Positive operators and square roots The group of invertible operators A characterization of B*-algebras An ergodic theorem Exercises 13 Unbounded Operators Introduction Graphs and symmetric operators The Cayley transform Resolutions of the identity The spectral theorem Semigroups of operators Exercises Appendix A Compactness and Continuity Appendix B Notes and Comments Bibliography List of Special Symbols Index
展开全部

作者简介

沃尔特·鲁丁(Walter Rudin),1953年于杜克大学获得数学博士学位。曾先后执教于麻省理工学院、罗切斯特大学、威斯康星大学麦迪逊分校、耶鲁大学等。他的主要研究兴趣集中在调和分析和复变函数上。除本书外,他还著有《Functional Analysis》(泛函分析)和《Principles of Mathematical Analysis》(数学分析原理)等其他名著。这些教材已被翻译成十几种语言,在世界各地广泛使用。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航