×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
暂无评论
图文详情
  • ISBN:9787567596054
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:16开
  • 页数:143
  • 出版时间:2020-04-01
  • 条形码:9787567596054 ; 978-7-5675-9605-4

本书特色

面积不仅用于计算,也是平面几何中相当重要的证明方法。三角形面积是平面几何两大计算体系之一的基础,它本身以及建立其上的梅涅劳斯定理、塞瓦定理、正弦定理等有着极为广泛的应用(另一大计算体系是以勾股定理为基础,以及建立其上的余弦定理、托勒密定理等),且较另一计算体系使用*为方便。两大计算体系同时也是两大证明方法,且常常*多地用于证明。本书集中于对面积方法的探讨,由浅入深、较为全面地展示面积方法在新老问题上的威力和精妙。

内容简介

面积不仅用于计算,也是平面几何中相当重要的证明方法。三角形面积是平面几何两大计算体系之一的基础,它本身以及建立其上的梅涅劳斯定理、塞瓦定理、正弦定理等有着极为广泛的应用(另一大计算体系是以勾股定理为基础,以及建立其上的余弦定理、托勒密定理等),且较另一计算体系使用更为方便。两大计算体系同时也是两大证明方法,且常常更多地用于证明。本书集中于对面积方法的探讨,由浅入深、较为全面地展示面积方法在新老问题上的威力和精妙。

目录

0 几何题究竟是怎样证明的 0.1 简化图形原则 0.2 破坏对称原则 O.3 以进为退原则 0.4 重新表述原则 0.5 制造对称原则 1 三角形的面积与面积比 2 较为复杂的问题 3 不等关系与极值问题 4 面积与正弦定理 5 杂题选讲 习题解答
展开全部

作者简介

田廷彦,中学时曾获全国高中数学联赛一等奖、美国数学邀请赛一等奖,毕业于上海交通大学应用数学系,之后长期从事中学生数学奥林匹克教学工作,曾教导过几位IMO金牌选手。擅长平面几何解题;此外对数学和自然科学科普有很大兴趣,是上海市科普作家协会会员,偶尔也参与数学科普写作。著有《圆》、《数学奥林匹克中的智巧》、《课堂上听不到的数学传奇》、《诡谲数学》,合著有《力量》、《多功能题典·初中数学竞赛》、《十万个为什么·数学》等。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航