暂无评论
图文详情
- ISBN:9787560396439
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:其他
- 页数:483
- 出版时间:2021-08-01
- 条形码:9787560396439 ; 978-7-5603-9643-9
内容简介
这是一部英文版的数学专著。本书较之普通伽罗瓦理论介绍书的一大特点是作者读原著、悟思想、新思路、新解读.而国内诸多著作者没听说哪位读过伽罗瓦的原著,而大多是二手、三手、…n手的转述,所以以讹传讹不可避免。
目录
Acknowledgements
Preface to the First Edition
Preface to the Second Edition
Preface to the Third Edition
Preface to the Fourth Edition
Historical Introduction
1 Classical Algebra
1.1 Complex Numbers
1.2 Subfields and Subrings of the Complex Numbers
1.3 Solving Equations
1.4 Solution by Radicals
2 The Fundamental Theorem of Algebra
2.1 Polynomials
2.2 Fundamental Theorem of Algebra
2.3 Implications
3 Factorisation of Polynomials
3.1 The Euclidean Algorithm
3.2 Irreducibility
3.3 Gauss's Lemma
3.4 Eisenstein's Criterion
3.5 Reduction Modulo p
3.6 Zeros of Polynomials
4 Field Extensions
4.1 Field Extensions
4.2 Rational Expressions
4.3 Simple Extensions
5 Simple Extensions
5.1 Algebraic and Transcendental Extensions
5.2 The Minimal Polynomial
5.3 Simple Algebraic Extensions
5.4 Classifying Simple Extensions
6 The Degree of an Extension
6.1 Definition of the Degree
6.2 The Tower Law
7 Ruler-and-Compass Constructions
7.1 Approximate Constructions and More General Instruments
7.2 Constructions in C
7.3 Specific Constructions
7.4 Impossibility Proofs
7.5 Construction From a Given Set of Points
8 The Idea Behind Galois Theory
8.1 A First Look at Galois Theory
8.2 Galois Groups According to Galois
8.3 How to Use the Galois Group
8.4 The Abstract Setting
8.5 Polynomials and Extensions
8.6 The Galois Correspondence
8.7 Diet Galois
8.8 Natural Irrationalities
9 Normality and Separability
9.1 Splitting Fields
9.2 Normality
9.3 Separability
10 Counting Principles
10.1 Linear Independence of Monomorphisms
11 Field Automorphisms
11.1 K-Monomorphisms
11.2 Normal Closures
12 The Galois Correspondence
12.1 The Fundamental Theorem of Galois Theory
13 A Worked Example
14 Solubility and Simplicity
14.1 Soluble Groups
14.2 Simple Groups
14.3 Cauchy's Theorem
15 Solution by Radicals
15.1 Radical Extensions
15.2 An Insoluble Quintic
15.3 Other Methods
16 Abstract Rings and Fields
16.1 Rings and Fields
16.2 General Properties of Rings and Fields
16.3 Polynomials Over General Rings
16.4 The Characteristic of a Field
16.5 Integral Domains
17 Abstract Field Extensions
17.1 Minimal Polynomials
17.2 Simple Algebraic Extensions
17.3 Splitting Fields
17.4 Normality
17.5 Separability
17.6 Galois Theory for Abstract Fields
18 The General Polynomial Equation
18.1 Transcendence Degree
18.2 Elementary Symmetric Polynomials
18.3 The General Polynomial
18.4 Cyclic Extensions
18.5 Solving Equations of Degree Four or Less
19 Finite Fields
19.1 Structure of Finite Fields
19.2 The Multiplicative Group
19.3 Application to Solitaire
20 Regular Polygons
20.1 What Euclid Knew
20.2 Which Constructions are Possible?
20.3 Regular Polygons
20.4 Fermat Numbers
20.5 How to Draw a Regular 17-gon
21 Circle Division
21.1 Genuine Radicals
21.2 Fifth Roots Revisited
21.3 Vandermonde Revisited
21.4 The General Case
21.5 Cyclotomic Polynomials
21.6 Galois Group ofQ(ζ) :Q
21.7 The Technical Lemma
21.8 More on Cyclotomic Polynomials
21.9 Constructions Using a Trisector
22 Calculating Galois Groups
22.1 Transitive Subgroups
22.2 Bare Hands on the Cubic
22.3 The Discriminant
22.4 General Algorithm for the Galois Group
23 Algebraically Closed Fields
23.1 Ordered Fields and Their Extensions
23.2 Sylow's Theorem
23.3 The Algebraic Proof
24 Transcendental Numbers
24.1 Irrationality
24.2 Transcendence of e
24.3 Transcendence of π
25 What Did Galois Do or Know?
25.1 List of the Relevant Material
25.2 The First Memoir
25.3 What Galois Proved
25.4 What is Galois Up To?
25.5 Alternating Groups, Espely A5
25.6 Simple Groups Known to Galois
……
Preface to the First Edition
Preface to the Second Edition
Preface to the Third Edition
Preface to the Fourth Edition
Historical Introduction
1 Classical Algebra
1.1 Complex Numbers
1.2 Subfields and Subrings of the Complex Numbers
1.3 Solving Equations
1.4 Solution by Radicals
2 The Fundamental Theorem of Algebra
2.1 Polynomials
2.2 Fundamental Theorem of Algebra
2.3 Implications
3 Factorisation of Polynomials
3.1 The Euclidean Algorithm
3.2 Irreducibility
3.3 Gauss's Lemma
3.4 Eisenstein's Criterion
3.5 Reduction Modulo p
3.6 Zeros of Polynomials
4 Field Extensions
4.1 Field Extensions
4.2 Rational Expressions
4.3 Simple Extensions
5 Simple Extensions
5.1 Algebraic and Transcendental Extensions
5.2 The Minimal Polynomial
5.3 Simple Algebraic Extensions
5.4 Classifying Simple Extensions
6 The Degree of an Extension
6.1 Definition of the Degree
6.2 The Tower Law
7 Ruler-and-Compass Constructions
7.1 Approximate Constructions and More General Instruments
7.2 Constructions in C
7.3 Specific Constructions
7.4 Impossibility Proofs
7.5 Construction From a Given Set of Points
8 The Idea Behind Galois Theory
8.1 A First Look at Galois Theory
8.2 Galois Groups According to Galois
8.3 How to Use the Galois Group
8.4 The Abstract Setting
8.5 Polynomials and Extensions
8.6 The Galois Correspondence
8.7 Diet Galois
8.8 Natural Irrationalities
9 Normality and Separability
9.1 Splitting Fields
9.2 Normality
9.3 Separability
10 Counting Principles
10.1 Linear Independence of Monomorphisms
11 Field Automorphisms
11.1 K-Monomorphisms
11.2 Normal Closures
12 The Galois Correspondence
12.1 The Fundamental Theorem of Galois Theory
13 A Worked Example
14 Solubility and Simplicity
14.1 Soluble Groups
14.2 Simple Groups
14.3 Cauchy's Theorem
15 Solution by Radicals
15.1 Radical Extensions
15.2 An Insoluble Quintic
15.3 Other Methods
16 Abstract Rings and Fields
16.1 Rings and Fields
16.2 General Properties of Rings and Fields
16.3 Polynomials Over General Rings
16.4 The Characteristic of a Field
16.5 Integral Domains
17 Abstract Field Extensions
17.1 Minimal Polynomials
17.2 Simple Algebraic Extensions
17.3 Splitting Fields
17.4 Normality
17.5 Separability
17.6 Galois Theory for Abstract Fields
18 The General Polynomial Equation
18.1 Transcendence Degree
18.2 Elementary Symmetric Polynomials
18.3 The General Polynomial
18.4 Cyclic Extensions
18.5 Solving Equations of Degree Four or Less
19 Finite Fields
19.1 Structure of Finite Fields
19.2 The Multiplicative Group
19.3 Application to Solitaire
20 Regular Polygons
20.1 What Euclid Knew
20.2 Which Constructions are Possible?
20.3 Regular Polygons
20.4 Fermat Numbers
20.5 How to Draw a Regular 17-gon
21 Circle Division
21.1 Genuine Radicals
21.2 Fifth Roots Revisited
21.3 Vandermonde Revisited
21.4 The General Case
21.5 Cyclotomic Polynomials
21.6 Galois Group ofQ(ζ) :Q
21.7 The Technical Lemma
21.8 More on Cyclotomic Polynomials
21.9 Constructions Using a Trisector
22 Calculating Galois Groups
22.1 Transitive Subgroups
22.2 Bare Hands on the Cubic
22.3 The Discriminant
22.4 General Algorithm for the Galois Group
23 Algebraically Closed Fields
23.1 Ordered Fields and Their Extensions
23.2 Sylow's Theorem
23.3 The Algebraic Proof
24 Transcendental Numbers
24.1 Irrationality
24.2 Transcendence of e
24.3 Transcendence of π
25 What Did Galois Do or Know?
25.1 List of the Relevant Material
25.2 The First Memoir
25.3 What Galois Proved
25.4 What is Galois Up To?
25.5 Alternating Groups, Espely A5
25.6 Simple Groups Known to Galois
……
展开全部
本类五星书
本类畅销
-
勒维特之星-大发现系列丛书
¥4.0¥16.0 -
喜马拉雅山珍稀鸟类图鉴
¥23.8¥68.0 -
昆虫的生存之道
¥19.1¥38.0 -
昆虫采集制作及主要目科简易识别手册
¥20.5¥50.0 -
古文诗词中的地球与环境事件
¥8.4¥28.0 -
声音简史
¥18.7¥52.0 -
物理学之美-插图珍藏版
¥30.4¥69.0 -
不匹配的一对:动物王国的性别文化
¥13.7¥42.8 -
技术史入门
¥20.6¥48.0 -
现代物理学的概念和理论
¥23.1¥68.0 -
图说相对论(32开平装)
¥19.8¥46.0 -
数学的魅力;初等数学概念演绎
¥13.0¥22.0 -
数学专题讲座
¥11.0¥29.0 -
改变世界的发现
¥15.4¥48.0 -
为了人人晓得相对论
¥4.6¥13.5 -
舟山群岛植物图志
¥20.1¥59.0 -
宇宙与人
¥10.5¥35.0 -
布尔巴基-数学家的秘密社团
¥11.4¥38.0 -
一代神话:哥本哈根学派
¥6.7¥15.5 -
考研数学高频考点精选题
¥1.2¥3.2