×
PYTHON深度学习及智能车竞赛实践

PYTHON深度学习及智能车竞赛实践

1星价 ¥74.3 (7.5折)
2星价¥74.3 定价¥99.0
暂无评论
图文详情
  • ISBN:9787111752141
  • 装帧:平装-胶订
  • 册数:暂无
  • 重量:暂无
  • 开本:16开
  • 页数:294
  • 出版时间:2024-03-01
  • 条形码:9787111752141 ; 978-7-111-75214-1

本书特色

1.本书配套刮刮卡,凭借其兑换码可以以1折价格观看专题讲座,也可以凭借兑换码加入“智能汽车与深度学习”读者专属群与作者交流。一个兑换码只能供一个手机号使用。
2.本书全彩印刷,内容丰富且循序渐进。本课程内容从零基础开始讲解python,由易到难逐步过渡到能设计深度学习模型完成车辆图片分类深度学习模型设计、智能汽车竞赛的自动巡航、目标检测任务等。配套有习题、线上实践项目、线下竞赛等丰富的教学资源,共设计有四大部分共11章内容。
3. 本书深度融合全国大学生智能汽车竞赛深度学习项目,讲述了完整的Python深度学习 智能车开发流程和知识体系。
4. 本书实用性和实践性强,由北京航空航天大学和北京百度网讯科技有限公司联合打造建设,引入了产业级工程实践项目,并基于全国大学生智能汽车竞赛设计各知识点的教学实例,以竞赛内容串联各章理论知识点,实现课程和学科竞赛的深度融合,有力的促进学生解决复杂工程问题能力的提升。
5. 本书遵循教指委相关指导文件和高等院校学生学习规律编写而成。践行四新理念,融入思政元素,注重理论与实践相结合。
6. 本书可作为智能车辆、智慧交通、计算机、自动控制等专业的人工智能入门教材,也可作为全国大学生智能汽车竞赛的参考书,还可以作为车辆行业相关专业工程技术参考、培训用书。

内容简介

本书结合全国大学生智能汽车竞赛百度智慧交通创意赛和接近模型组竞速赛,循序渐进地对Python和深度学习的基本知识进行了全面、系统的介绍。全书共11章,分为Python基础知识体系、Python文件处理与数据分析、深度学习基础理论与实践、智能车竞赛任务与实践四部分,详细介绍了Python基础知识、Python数据分析方法、机器学习概念、全连接神经网络和卷积神经网络模型的理论及产业级工程项目实践等。通过学习本书,学生可以从零基础开始,到能完成深度学习模型设计及部署验证,完成智能汽车竞赛中关于图像处理和深度学习相关的任务。 本书内容丰富、叙述清晰、循序渐进,采用新形态构建形式,配套有MOOC、教学案例、习题等。本书可作为智能车辆、智慧交通、计算机、自动控制等专业的人工智能入门教材,也可作为全国大学生智能汽车竞赛的参考书。

目录

前言
二维码清单
第1部分 Python 基础知识体系
第1章?绪论 / 002
1.1?人工智能的发展及基本概念 / 002
1.1.1?人工智能的起源与发展 / 002
1.1.2?中国人工智能技术的发展 / 004
1.1.3?人工智能的基本概念 / 007
1.2?智能汽车及全国大学生智能汽车竞赛 / 009
1.2.1?智能汽车技术概述 / 009
1.2.2?全国大学生智能汽车竞赛简介 / 010
1.3?程序设计语言及Python语言简介 / 011
1.3.1?低级语言和高级语言 / 011
1.3.2?结构化语言和面向对象语言 / 013
1.3.3?Python语言特点 / 013
1.3.4?Python开发环境及小实例 / 014
习题 / 018
第2章?Python基本语法元素及数据类型 / 020
2.1?程序的基本设计方法 / 020
2.1.1?IPO程序设计方法 / 020
2.1.2?实例:ReLU激活函数 / 021
2.1.3?实例:智能车差速转向 / 021
2.2?Python基本语法元素 / 022
2.2.1?注释(comment) / 022
2.2.2?缩进(indent) / 023
2.2.3?标识符(identifier) / 023
2.2.4?赋值语句 / 024
2.2.5?input()函数 / 025
2.2.6?print()函数 / 025
2.2.7?eval()函数 / 026
2.2.8?分支语句 / 026
2.2.9?功能库引用 / 027
2.3?Python基本数据类型 / 027
2.3.1?数字类型概述 / 027
2.3.2?数字类型的操作 / 029
2.3.3?字符串类型概述 / 032
2.3.4?字符串类型的操作 / 033
2.3.5?字符串类型的格式化 / 036
2.4?math库 / 037
2.4.1?math库概述 / 037
2.4.2?math库常用函数 / 038
2.4.3?实例:使用math库计算组合数和排列数 / 040
2.5?time库 / 040
2.5.1?time库概述 / 040
2.5.2?time库常用函数 / 041
2.5.3?实例:使用time库计算代码执行时间 / 041
习题 / 042
第3章?程序控制结构 / 044
3.1?程序流程图与基本结构 / 044
3.2?程序的分支结构 / 046
3.2.1?单分支结构:if语句 / 046
3.2.2?二分支结构:if- else语句 / 047
3.2.3?多分支结构:if- elif- else语句 / 047
3.2.4?实例:简单计算器 / 048
3.3?程序的循环结构 / 048
3.3.1?遍历循环:for循环 / 049
3.3.2?条件循环:while循环 / 050
3.3.3?循环保留字:break和continue / 051
3.4?程序异常处理 / 053
3.5?random库 / 054
3.5.1?random库概述 / 054
3.5.2?random库使用 / 054
3.6?turtle库 / 055
3.6.1?turtle库概述 / 055
3.6.2?turtle库使用 / 055
3.6.3?实例:智能车竞赛车道线绘制 / 058
习题 / 060
第4章?函数和类 / 062
4.1?代码复用和模块化设计 / 062
4.2?函数 / 063
4.2.1?函数的定义和调用 / 063
4.2.2?函数参数传递 / 064
4.2.3?函数的返回值 / 066
4.2.4?函数的递归 / 067
4.2.5?局部变量和全局变量 / 068
4.2.6?匿名函数:lambda函数 / 069
4.2.7?实例:单层感知器函数设计 / 070
4.3?面向对象和类 / 072
4.3.1?面向对象编程基本概念 / 072
4.3.2?类和对象 / 073
4.3.3?基类和继承 / 076
4.4?实例:智能车自动巡航类创建 / 078
4.5?实例:单层感知器类创建 / 079
习题 / 080
第5章?组合数据类型 / 083
5.1?概述 / 083
5.2?序列类型 / 084
5.2.1?元组及其操作 / 085
5.2.2?列表及其操作 / 086
5.2.3?列表操作 / 089
5.3?集合类型 / 093
5.3.1?集合的创建 / 093
5.3.2?集合的操作 / 093
5. 4?映射类型 / 096
5.4.1?字典的创建和访问 / 097
5.4.2?字典的操作 / 098
5.4.3?实例:使用字典实现英文词频统计 / 101
5.4.4?实例:用类创建智能车自动巡航的字典 / 102
5.5?jieba库 / 103
5.5.1?jieba库概述 / 103
5.5.2?jieba库安装与分词方法 / 103
5.5.3?实例:“智能汽车创新发展战略”词频统计 / 104
5.6?wordcloud库 / 105
5.6.1?wordcloud库概述 / 105
5.6.2?wordcloud库安装 / 106
5.6.3?wordcloud对象创建及参数设置 / 106
5.6.4?实例:党的二十大报告词云生成 / 107
习题 / 109
第2部分 Python 文件处理与数据分析
第6章?文件和数据格式化 / 112
6.1?文件的使用 / 112
6.1.1?文件的理解 / 112
6.1.2?文件的打开和关闭 / 114
6.1.3?文件的读取 / 115
6.1.4?文件的写入 / 118
6.1.5?实例:赛车道自动绘制 / 120
6.1.6?os库和zipfile库 / 122
6.1.7 实例:车辆图片数据集处理 / 123
6.2?数据的格式化和处理 / 125
6.2.1?一维数据 / 125
6.2.2?二维数据 / 126
6.2.3?高维数据json库使用 / 130
6.2.4?实例:车辆图片json文件处理 / 132
6.3?PIL库 / 133
6.3.1?PIL库简介 / 133
6.3.2?Image对象 / 133
6.3.3?图像格式转换 / 135
6.3.4?图像缩放 / 136
6.3.5?图像分离与融合 / 138
6.3.6?图像几何变换 / 140
6.3.7 其他图像处理类 / 141
6.4?OpenCV库 / 144
6.4.1?OpenCV库简介 / 144
6.4.2?OpenCV常用库函数 / 144
6.4.3?色彩空间转换 / 146
习题 / 149
第7章?Python计算生态及机器学习概述 / 151
7.1?计算思维的概念 / 151
7.2?Python计算生态 / 152
7.2.1?Python计算生态简介 / 152
7.2.2?常用库简介 / 153
7.3?Python数据分析库 / 155
7.3.1?numpy库 / 155
7.3.2?pandas库 / 168
7.3.3?matplotlib库 / 173
7.3.4?实例:loss和acc曲线绘制
展开全部

作者简介

徐国艳,副教授、工学博士,北京市高等学校优秀专业课主讲教师,北京航空航天大学校教学名师。
刘聪琳,任职于百度AI技术生态部,负责百度AI技术生态各项重点赛事的设计和运营工作,包括全国大学生智能汽车竞赛百度竞速及创意双赛道等10余项国内外顶级赛事,覆盖算法赛、软件赛、硬件赛和创意赛等赛型。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航